Paper ID: 2207.11742

From Multi-label Learning to Cross-Domain Transfer: A Model-Agnostic Approach

Jesse Read

In multi-label learning, a particular case of multi-task learning where a single data point is associated with multiple target labels, it was widely assumed in the literature that, to obtain best accuracy, the dependence among the labels should be explicitly modeled. This premise led to a proliferation of methods offering techniques to learn and predict labels together, for example where the prediction for one label influences predictions for other labels. Even though it is now acknowledged that in many contexts a model of dependence is not required for optimal performance, such models continue to outperform independent models in some of those very contexts, suggesting alternative explanations for their performance beyond label dependence, which the literature is only recently beginning to unravel. Leveraging and extending recent discoveries, we turn the original premise of multi-label learning on its head, and approach the problem of joint-modeling specifically under the absence of any measurable dependence among task labels; for example, when task labels come from separate problem domains. We shift insights from this study towards building an approach for transfer learning that challenges the long-held assumption that transferability of tasks comes from measurements of similarity between the source and target domains or models. This allows us to design and test a method for transfer learning, which is model driven rather than purely data driven, and furthermore it is black box and model-agnostic (any base model class can be considered). We show that essentially we can create task-dependence based on source-model capacity. The results we obtain have important implications and provide clear directions for future work, both in the areas of multi-label and transfer learning.

Submitted: Jul 24, 2022