Paper ID: 2207.11753
Label-Guided Auxiliary Training Improves 3D Object Detector
Yaomin Huang, Xinmei Liu, Yichen Zhu, Zhiyuan Xu, Chaomin Shen, Zhengping Che, Guixu Zhang, Yaxin Peng, Feifei Feng, Jian Tang
Detecting 3D objects from point clouds is a practical yet challenging task that has attracted increasing attention recently. In this paper, we propose a Label-Guided auxiliary training method for 3D object detection (LG3D), which serves as an auxiliary network to enhance the feature learning of existing 3D object detectors. Specifically, we propose two novel modules: a Label-Annotation-Inducer that maps annotations and point clouds in bounding boxes to task-specific representations and a Label-Knowledge-Mapper that assists the original features to obtain detection-critical representations. The proposed auxiliary network is discarded in inference and thus has no extra computational cost at test time. We conduct extensive experiments on both indoor and outdoor datasets to verify the effectiveness of our approach. For example, our proposed LG3D improves VoteNet by 2.5% and 3.1% mAP on the SUN RGB-D and ScanNetV2 datasets, respectively.
Submitted: Jul 24, 2022