Paper ID: 2207.11918

Analysis and Optimization of GNN-Based Recommender Systems on Persistent Memory

Yuwei Hu, Jiajie Li, Zhongming Yu, Zhiru Zhang

Graph neural networks (GNNs), which have emerged as an effective method for handling machine learning tasks on graphs, bring a new approach to building recommender systems, where the task of recommendation can be formulated as the link prediction problem on user-item bipartite graphs. Training GNN-based recommender systems (GNNRecSys) on large graphs incurs a large memory footprint, easily exceeding the DRAM capacity on a typical server. Existing solutions resort to distributed subgraph training, which is inefficient due to the high cost of dynamically constructing subgraphs and significant redundancy across subgraphs. The emerging persistent memory technologies provide a significantly larger memory capacity than DRAMs at an affordable cost, making single-machine GNNRecSys training feasible, which eliminates the inefficiencies in distributed training. One major concern of using persistent memory devices for GNNRecSys is their relatively low bandwidth compared with DRAMs. This limitation can be particularly detrimental to achieving high performance for GNNRecSys workloads since their dominant compute kernels are sparse and memory access intensive. To understand whether persistent memory is a good fit for GNNRecSys training, we perform an in-depth characterization of GNNRecSys workloads and a comprehensive analysis of their performance on a persistent memory device, namely, Intel Optane. Based on the analysis, we provide guidance on how to configure Optane for GNNRecSys workloads. Furthermore, we present techniques for large-batch training to fully realize the advantages of single-machine GNNRecSys training. Our experiment results show that with the tuned batch size and optimal system configuration, Optane-based single-machine GNNRecSys training outperforms distributed training by a large margin, especially when handling deep GNN models.

Submitted: Jul 25, 2022