Paper ID: 2207.12045
Online Reinforcement Learning for Periodic MDP
Ayush Aniket, Arpan Chattopadhyay
We study learning in periodic Markov Decision Process(MDP), a special type of non-stationary MDP where both the state transition probabilities and reward functions vary periodically, under the average reward maximization setting. We formulate the problem as a stationary MDP by augmenting the state space with the period index, and propose a periodic upper confidence bound reinforcement learning-2 (PUCRL2) algorithm. We show that the regret of PUCRL2 varies linearly with the period and as sub-linear with the horizon length. Numerical results demonstrate the efficacy of PUCRL2.
Submitted: Jul 25, 2022