Paper ID: 2208.04564

Statistical Properties of the log-cosh Loss Function Used in Machine Learning

Resve A. Saleh, A. K. Md. Ehsanes Saleh

This paper analyzes a popular loss function used in machine learning called the log-cosh loss function. A number of papers have been published using this loss function but, to date, no statistical analysis has been presented in the literature. In this paper, we present the distribution function from which the log-cosh loss arises. We compare it to a similar distribution, called the Cauchy distribution, and carry out various statistical procedures that characterize its properties. In particular, we examine its associated pdf, cdf, likelihood function and Fisher information. Side-by-side we consider the Cauchy and Cosh distributions as well as the MLE of the location parameter with asymptotic bias, asymptotic variance, and confidence intervals. We also provide a comparison of robust estimators from several other loss functions, including the Huber loss function and the rank dispersion function. Further, we examine the use of the log-cosh function for quantile regression. In particular, we identify a quantile distribution function from which a maximum likelihood estimator for quantile regression can be derived. Finally, we compare a quantile M-estimator based on log-cosh with robust monotonicity against another approach to quantile regression based on convolutional smoothing.

Submitted: Aug 9, 2022