Paper ID: 2208.06557
A Novel Regularization Approach to Fair ML
Norman Matloff, Wenxi Zhang
A number of methods have been introduced for the fair ML issue, most of them complex and many of them very specific to the underlying ML moethodology. Here we introduce a new approach that is simple, easily explained, and potentially applicable to a number of standard ML algorithms. Explicitly Deweighted Features (EDF) reduces the impact of each feature among the proxies of sensitive variables, allowing a different amount of deweighting applied to each such feature. The user specifies the deweighting hyperparameters, to achieve a given point in the Utility/Fairness tradeoff spectrum. We also introduce a new, simple criterion for evaluating the degree of protection afforded by any fair ML method.
Submitted: Aug 13, 2022