Paper ID: 2208.08233

Dynamical softassign and adaptive parameter tuning for graph matching

Binrui Shen, Qiang Niu, Shengxin Zhu

This paper studies a unified framework for graph matching problems called the constrained gradient method. Popular algorithms within this framework include graduated assignment (GA), integer projected fixed-point method (IPFP), and doubly stochastic projected fixed-point method (DSPFP). These algorithms differ from the step size parameter and constrained operator. Our contributed adaptive step size parameter can guarantee the underlying algorithms' convergence and enhance their efficiency and accuracy. A preliminary analysis suggests that the optimal step size parameter has a high probability of being 1 in fully connected graph matching. Secondly, we propose a dynamic strategy for softassign, a popular constrained operator, to address its sensitivity concerning nodes' cardinality and risk of overflow. Combining the adaptive step size parameter and the dynamical softassign, we propose a novel graph matching algorithm: the softassign constrained gradient method. Various experiments demonstrate that it is significantly faster than other state-of-the-art algorithms based on the constrained gradient method with improved accuracy.

Submitted: Aug 17, 2022