Paper ID: 2208.09130
Personalizing Intervened Network for Long-tailed Sequential User Behavior Modeling
Zheqi Lv, Feng Wang, Shengyu Zhang, Kun Kuang, Hongxia Yang, Fei Wu
In an era of information explosion, recommendation systems play an important role in people's daily life by facilitating content exploration. It is known that user activeness, i.e., number of behaviors, tends to follow a long-tail distribution, where the majority of users are with low activeness. In practice, we observe that tail users suffer from significantly lower-quality recommendation than the head users after joint training. We further identify that a model trained on tail users separately still achieve inferior results due to limited data. Though long-tail distributions are ubiquitous in recommendation systems, improving the recommendation performance on the tail users still remains challenge in both research and industry. Directly applying related methods on long-tail distribution might be at risk of hurting the experience of head users, which is less affordable since a small portion of head users with high activeness contribute a considerate portion of platform revenue. In this paper, we propose a novel approach that significantly improves the recommendation performance of the tail users while achieving at least comparable performance for the head users over the base model. The essence of this approach is a novel Gradient Aggregation technique that learns common knowledge shared by all users into a backbone model, followed by separate plugin prediction networks for the head users and the tail users personalization. As for common knowledge learning, we leverage the backward adjustment from the causality theory for deconfounding the gradient estimation and thus shielding off the backbone training from the confounder, i.e., user activeness. We conduct extensive experiments on two public recommendation benchmark datasets and a large-scale industrial datasets collected from the Alipay platform. Empirical studies validate the rationality and effectiveness of our approach.
Submitted: Aug 19, 2022