Paper ID: 2208.09751

MLExchange: A web-based platform enabling exchangeable machine learning workflows for scientific studies

Zhuowen Zhao, Tanny Chavez, Elizabeth A. Holman, Guanhua Hao, Adam Green, Harinarayan Krishnan, Dylan McReynolds, Ronald Pandolfi, Eric J. Roberts, Petrus H. Zwart, Howard Yanxon, Nicholas Schwarz, Subramanian Sankaranarayanan, Sergei V. Kalinin, Apurva Mehta, Stuart Campbell, Alexander Hexemer

Machine learning (ML) algorithms are showing a growing trend in helping the scientific communities across different disciplines and institutions to address large and diverse data problems. However, many available ML tools are programmatically demanding and computationally costly. The MLExchange project aims to build a collaborative platform equipped with enabling tools that allow scientists and facility users who do not have a profound ML background to use ML and computational resources in scientific discovery. At the high level, we are targeting a full user experience where managing and exchanging ML algorithms, workflows, and data are readily available through web applications. Since each component is an independent container, the whole platform or its individual service(s) can be easily deployed at servers of different scales, ranging from a personal device (laptop, smart phone, etc.) to high performance clusters (HPC) accessed (simultaneously) by many users. Thus, MLExchange renders flexible using scenarios -- users could either access the services and resources from a remote server or run the whole platform or its individual service(s) within their local network.

Submitted: Aug 20, 2022