Paper ID: 2208.10255
On the non-efficient PAC learnability of conjunctive queries
Balder ten Cate, Maurice Funk, Jean Christoph Jung, Carsten Lutz
This note serves three purposes: (i) we provide a self-contained exposition of the fact that conjunctive queries are not efficiently learnable in the Probably-Approximately-Correct (PAC) model, paying clear attention to the complicating fact that this concept class lacks the polynomial-size fitting property, a property that is tacitly assumed in much of the computational learning theory literature; (ii) we establish a strong negative PAC learnability result that applies to many restricted classes of conjunctive queries (CQs), including acyclic CQs for a wide range of notions of "acyclicity"; (iii) we show that CQs (and UCQs) are efficiently PAC learnable with membership queries.
Submitted: Aug 22, 2022