Paper ID: 2208.11321

TESTSGD: Interpretable Testing of Neural Networks Against Subtle Group Discrimination

Mengdi Zhang, Jun Sun, Jingyi Wang, Bing Sun

Discrimination has been shown in many machine learning applications, which calls for sufficient fairness testing before their deployment in ethic-relevant domains such as face recognition, medical diagnosis and criminal sentence. Existing fairness testing approaches are mostly designed for identifying individual discrimination, i.e., discrimination against individuals. Yet, as another widely concerning type of discrimination, testing against group discrimination, mostly hidden, is much less studied. To address the gap, in this work, we propose TESTSGD, an interpretable testing approach which systematically identifies and measures hidden (which we call `subtle' group discrimination} of a neural network characterized by conditions over combinations of the sensitive features. Specifically, given a neural network, TESTSGDfirst automatically generates an interpretable rule set which categorizes the input space into two groups exposing the model's group discrimination. Alongside, TESTSGDalso provides an estimated group fairness score based on sampling the input space to measure the degree of the identified subtle group discrimination, which is guaranteed to be accurate up to an error bound. We evaluate TESTSGDon multiple neural network models trained on popular datasets including both structured data and text data. The experiment results show that TESTSGDis effective and efficient in identifying and measuring such subtle group discrimination that has never been revealed before. Furthermore, we show that the testing results of TESTSGDcan guide generation of new samples to mitigate such discrimination through retraining with negligible accuracy drop.

Submitted: Aug 24, 2022