Paper ID: 2208.11464

FactMix: Using a Few Labeled In-domain Examples to Generalize to Cross-domain Named Entity Recognition

Linyi Yang, Lifan Yuan, Leyang Cui, Wenyang Gao, Yue Zhang

Few-shot Named Entity Recognition (NER) is imperative for entity tagging in limited resource domains and thus received proper attention in recent years. Existing approaches for few-shot NER are evaluated mainly under in-domain settings. In contrast, little is known about how these inherently faithful models perform in cross-domain NER using a few labeled in-domain examples. This paper proposes a two-step rationale-centric data augmentation method to improve the model's generalization ability. Results on several datasets show that our model-agnostic method significantly improves the performance of cross-domain NER tasks compared to previous state-of-the-art methods, including the data augmentation and prompt-tuning methods. Our codes are available at https://github.com/lifan-yuan/FactMix.

Submitted: Aug 24, 2022