Paper ID: 2208.13771
Fast Bayesian Optimization of Needle-in-a-Haystack Problems using Zooming Memory-Based Initialization (ZoMBI)
Alexander E. Siemenn, Zekun Ren, Qianxiao Li, Tonio Buonassisi
Needle-in-a-Haystack problems exist across a wide range of applications including rare disease prediction, ecological resource management, fraud detection, and material property optimization. A Needle-in-a-Haystack problem arises when there is an extreme imbalance of optimum conditions relative to the size of the dataset. For example, only $0.82\%$ out of $146$k total materials in the open-access Materials Project database have a negative Poisson's ratio. However, current state-of-the-art optimization algorithms are not designed with the capabilities to find solutions to these challenging multidimensional Needle-in-a-Haystack problems, resulting in slow convergence to a global optimum or pigeonholing into a local minimum. In this paper, we present a Zooming Memory-Based Initialization algorithm, entitled ZoMBI. ZoMBI actively extracts knowledge from the previously best-performing evaluated experiments to iteratively zoom in the sampling search bounds towards the global optimum "needle" and then prunes the memory of low-performing historical experiments to accelerate compute times by reducing the algorithm time complexity from $O(n^3)$ to $O(\phi^3)$ for $\phi$ forward experiments per activation, which trends to a constant $O(1)$ over several activations. Additionally, ZoMBI implements two custom adaptive acquisition functions to further guide the sampling of new experiments toward the global optimum. We validate the algorithm's optimization performance on three real-world datasets exhibiting Needle-in-a-Haystack and further stress-test the algorithm's performance on an additional 174 analytical datasets. The ZoMBI algorithm demonstrates compute time speed-ups of 400x compared to traditional Bayesian optimization as well as efficiently discovering optima in under 100 experiments that are up to 3x more highly optimized than those discovered by similar methods MiP-EGO, TuRBO, and HEBO.
Submitted: Aug 26, 2022