Paper ID: 2208.13902

Radial Prediction Domain Adaption Classifier for the MIDOG 2022 Challenge

Jonas Annuscheit, Christian Krumnow

This paper describes our contribution to the MIDOG 2022 challenge for detecting mitotic cells. One of the major problems to be addressed in the MIDOG 2022 challenge is the robustness under the natural variance that appears for real-life data in the histopathology field. To address the problem, we use an adapted YOLOv5s model for object detection in conjunction with a new Domain Adaption Classifier (DAC) variant, the Radial-Prediction-DAC, to achieve robustness under domain shifts. In addition, we increase the variability of the available training data using stain augmentation in HED color space. Using the suggested method, we obtain a test set F1-score of 0.6658.

Submitted: Aug 29, 2022