Paper ID: 2208.14318

Convergence Rates of Training Deep Neural Networks via Alternating Minimization Methods

Jintao Xu, Chenglong Bao, Wenxun Xing

Training deep neural networks (DNNs) is an important and challenging optimization problem in machine learning due to its non-convexity and non-separable structure. The alternating minimization (AM) approaches split the composition structure of DNNs and have drawn great interest in the deep learning and optimization communities. In this paper, we propose a unified framework for analyzing the convergence rate of AM-type network training methods. Our analysis is based on the non-monotone $j$-step sufficient decrease conditions and the Kurdyka-Lojasiewicz (KL) property, which relaxes the requirement of designing descent algorithms. We show the detailed local convergence rate if the KL exponent $\theta$ varies in $[0,1)$. Moreover, the local R-linear convergence is discussed under a stronger $j$-step sufficient decrease condition.

Submitted: Aug 30, 2022