Paper ID: 2209.00451
Group Activity Recognition in Basketball Tracking Data -- Neural Embeddings in Team Sports (NETS)
Sandro Hauri, Slobodan Vucetic
Like many team sports, basketball involves two groups of players who engage in collaborative and adversarial activities to win a game. Players and teams are executing various complex strategies to gain an advantage over their opponents. Defining, identifying, and analyzing different types of activities is an important task in sports analytics, as it can lead to better strategies and decisions by the players and coaching staff. The objective of this paper is to automatically recognize basketball group activities from tracking data representing locations of players and the ball during a game. We propose a novel deep learning approach for group activity recognition (GAR) in team sports called NETS. To efficiently model the player relations in team sports, we combined a Transformer-based architecture with LSTM embedding, and a team-wise pooling layer to recognize the group activity. Training such a neural network generally requires a large amount of annotated data, which incurs high labeling cost. To address scarcity of manual labels, we generate weak-labels and pretrain the neural network on a self-supervised trajectory prediction task. We used a large tracking data set from 632 NBA games to evaluate our approach. The results show that NETS is capable of learning group activities with high accuracy, and that self- and weak-supervised training in NETS have a positive impact on GAR accuracy.
Submitted: Aug 31, 2022