Paper ID: 2209.02197

LRT: An Efficient Low-Light Restoration Transformer for Dark Light Field Images

Shansi Zhang, Nan Meng, Edmund Y. Lam

Light field (LF) images containing information for multiple views have numerous applications, which can be severely affected by low-light imaging. Recent learning-based methods for low-light enhancement have some disadvantages, such as a lack of noise suppression, complex training process and poor performance in extremely low-light conditions. To tackle these deficiencies while fully utilizing the multi-view information, we propose an efficient Low-light Restoration Transformer (LRT) for LF images, with multiple heads to perform intermediate tasks within a single network, including denoising, luminance adjustment, refinement and detail enhancement, achieving progressive restoration from small scale to full scale. Moreover, we design an angular transformer block with an efficient view-token scheme to model the global angular dependencies, and a multi-scale spatial transformer block to encode the multi-scale local and global information within each view. To address the issue of insufficient training data, we formulate a synthesis pipeline by simulating the major noise sources with the estimated noise parameters of LF camera. Experimental results demonstrate that our method achieves the state-of-the-art performance on low-light LF restoration with high efficiency.

Submitted: Sep 6, 2022