Paper ID: 2209.03177
Morphology-preserving Autoregressive 3D Generative Modelling of the Brain
Petru-Daniel Tudosiu, Walter Hugo Lopez Pinaya, Mark S. Graham, Pedro Borges, Virginia Fernandez, Dai Yang, Jeremy Appleyard, Guido Novati, Disha Mehra, Mike Vella, Parashkev Nachev, Sebastien Ourselin, Jorge Cardoso
Human anatomy, morphology, and associated diseases can be studied using medical imaging data. However, access to medical imaging data is restricted by governance and privacy concerns, data ownership, and the cost of acquisition, thus limiting our ability to understand the human body. A possible solution to this issue is the creation of a model able to learn and then generate synthetic images of the human body conditioned on specific characteristics of relevance (e.g., age, sex, and disease status). Deep generative models, in the form of neural networks, have been recently used to create synthetic 2D images of natural scenes. Still, the ability to produce high-resolution 3D volumetric imaging data with correct anatomical morphology has been hampered by data scarcity and algorithmic and computational limitations. This work proposes a generative model that can be scaled to produce anatomically correct, high-resolution, and realistic images of the human brain, with the necessary quality to allow further downstream analyses. The ability to generate a potentially unlimited amount of data not only enables large-scale studies of human anatomy and pathology without jeopardizing patient privacy, but also significantly advances research in the field of anomaly detection, modality synthesis, learning under limited data, and fair and ethical AI. Code and trained models are available at: https://github.com/AmigoLab/SynthAnatomy.
Submitted: Sep 7, 2022