Paper ID: 2209.04132

Multi-level Adaptation for Automatic Landing with Engine Failure under Turbulent Weather

Haotian Gu, Hamidreza Jafarnejadsani

This paper addresses efficient feasibility evaluation of possible emergency landing sites, online navigation, and path following for automatic landing under engine-out failure subject to turbulent weather. The proposed Multi-level Adaptive Safety Control framework enables unmanned aerial vehicles (UAVs) under large uncertainties to perform safety maneuvers traditionally reserved for human pilots with sufficient experience. In this framework, a simplified flight model is first used for time-efficient feasibility evaluation of a set of landing sites and trajectory generation. Then, an online path following controller is employed to track the selected landing trajectory. We used a high-fidelity simulation environment for a fixed-wing aircraft to test and validate the proposed approach under various weather uncertainties. For the case of emergency landing due to engine failure under severe weather conditions, the simulation results show that the proposed automatic landing framework is robust to uncertainties and adaptable at different landing stages while being computationally inexpensive for planning and tracking tasks.

Submitted: Sep 9, 2022