Paper ID: 2209.05040
SANCL: Multimodal Review Helpfulness Prediction with Selective Attention and Natural Contrastive Learning
Wei Han, Hui Chen, Zhen Hai, Soujanya Poria, Lidong Bing
With the boom of e-commerce, Multimodal Review Helpfulness Prediction (MRHP), which aims to sort product reviews according to the predicted helpfulness scores has become a research hotspot. Previous work on this task focuses on attention-based modality fusion, information integration, and relation modeling, which primarily exposes the following drawbacks: 1) the model may fail to capture the really essential information due to its indiscriminate attention formulation; 2) lack appropriate modeling methods that take full advantage of correlation among provided data. In this paper, we propose SANCL: Selective Attention and Natural Contrastive Learning for MRHP. SANCL adopts a probe-based strategy to enforce high attention weights on the regions of greater significance. It also constructs a contrastive learning framework based on natural matching properties in the dataset. Experimental results on two benchmark datasets with three categories show that SANCL achieves state-of-the-art baseline performance with lower memory consumption.
Submitted: Sep 12, 2022