Paper ID: 2209.08026
Interactions in Information Spread
Gaël Poux-Médard
Since the development of writing 5000 years ago, human-generated data gets produced at an ever-increasing pace. Classical archival methods aimed at easing information retrieval. Nowadays, archiving is not enough anymore. The amount of data that gets generated daily is beyond human comprehension, and appeals for new information retrieval strategies. Instead of referencing every single data piece as in traditional archival techniques, a more relevant approach consists in understanding the overall ideas conveyed in data flows. To spot such general tendencies, a precise comprehension of the underlying data generation mechanisms is required. In the rich literature tackling this problem, the question of information interaction remains nearly unexplored. First, we investigate the frequency of such interactions. Building on recent advances made in Stochastic Block Modelling, we explore the role of interactions in several social networks. We find that interactions are rare in these datasets. Then, we wonder how interactions evolve over time. Earlier data pieces should not have an everlasting influence on ulterior data generation mechanisms. We model this using dynamic network inference advances. We conclude that interactions are brief. Finally, we design a framework that jointly models rare and brief interactions based on Dirichlet-Hawkes Processes. We argue that this new class of models fits brief and sparse interaction modelling. We conduct a large-scale application on Reddit and find that interactions play a minor role in this dataset. From a broader perspective, our work results in a collection of highly flexible models and in a rethinking of core concepts of machine learning. Consequently, we open a range of novel perspectives both in terms of real-world applications and in terms of technical contributions to machine learning.
Submitted: Sep 16, 2022