Paper ID: 2209.08060

PTab: Using the Pre-trained Language Model for Modeling Tabular Data

Guang Liu, Jie Yang, Ledell Wu

Tabular data is the foundation of the information age and has been extensively studied. Recent studies show that neural-based models are effective in learning contextual representation for tabular data. The learning of an effective contextual representation requires meaningful features and a large amount of data. However, current methods often fail to properly learn a contextual representation from the features without semantic information. In addition, it's intractable to enlarge the training set through mixed tabular datasets due to the difference between datasets. To address these problems, we propose a novel framework PTab, using the Pre-trained language model to model Tabular data. PTab learns a contextual representation of tabular data through a three-stage processing: Modality Transformation(MT), Masked-Language Fine-tuning(MF), and Classification Fine-tuning(CF). We initialize our model with a pre-trained Model (PTM) which contains semantic information learned from the large-scale language data. Consequently, contextual representation can be learned effectively during the fine-tuning stages. In addition, we can naturally mix the textualized tabular data to enlarge the training set to further improve representation learning. We evaluate PTab on eight popular tabular classification datasets. Experimental results show that our method has achieved a better average AUC score in supervised settings compared to the state-of-the-art baselines(e.g. XGBoost), and outperforms counterpart methods under semi-supervised settings. We present visualization results that show PTab has well instance-based interpretability.

Submitted: Sep 15, 2022