Paper ID: 2209.11963
A Deep Investigation of RNN and Self-attention for the Cyrillic-Traditional Mongolian Bidirectional Conversion
Muhan Na, Rui Liu, Feilong, Guanglai Gao
Cyrillic and Traditional Mongolian are the two main members of the Mongolian writing system. The Cyrillic-Traditional Mongolian Bidirectional Conversion (CTMBC) task includes two conversion processes, including Cyrillic Mongolian to Traditional Mongolian (C2T) and Traditional Mongolian to Cyrillic Mongolian conversions (T2C). Previous researchers adopted the traditional joint sequence model, since the CTMBC task is a natural Sequence-to-Sequence (Seq2Seq) modeling problem. Recent studies have shown that Recurrent Neural Network (RNN) and Self-attention (or Transformer) based encoder-decoder models have shown significant improvement in machine translation tasks between some major languages, such as Mandarin, English, French, etc. However, an open problem remains as to whether the CTMBC quality can be improved by utilizing the RNN and Transformer models. To answer this question, this paper investigates the utility of these two powerful techniques for CTMBC task combined with agglutinative characteristics of Mongolian language. We build the encoder-decoder based CTMBC model based on RNN and Transformer respectively and compare the different network configurations deeply. The experimental results show that both RNN and Transformer models outperform the traditional joint sequence model, where the Transformer achieves the best performance. Compared with the joint sequence baseline, the word error rate (WER) of the Transformer for C2T and T2C decreased by 5.72\% and 5.06\% respectively.
Submitted: Sep 24, 2022