Paper ID: 2209.12391
FastStamp: Accelerating Neural Steganography and Digital Watermarking of Images on FPGAs
Shehzeen Hussain, Nojan Sheybani, Paarth Neekhara, Xinqiao Zhang, Javier Duarte, Farinaz Koushanfar
Steganography and digital watermarking are the tasks of hiding recoverable data in image pixels. Deep neural network (DNN) based image steganography and watermarking techniques are quickly replacing traditional hand-engineered pipelines. DNN based watermarking techniques have drastically improved the message capacity, imperceptibility and robustness of the embedded watermarks. However, this improvement comes at the cost of increased computational overhead of the watermark encoder neural network. In this work, we design the first accelerator platform FastStamp to perform DNN based steganography and digital watermarking of images on hardware. We first propose a parameter efficient DNN model for embedding recoverable bit-strings in image pixels. Our proposed model can match the success metrics of prior state-of-the-art DNN based watermarking methods while being significantly faster and lighter in terms of memory footprint. We then design an FPGA based accelerator framework to further improve the model throughput and power consumption by leveraging data parallelism and customized computation paths. FastStamp allows embedding hardware signatures into images to establish media authenticity and ownership of digital media. Our best design achieves 68 times faster inference as compared to GPU implementations of prior DNN based watermark encoder while consuming less power.
Submitted: Sep 26, 2022