Paper ID: 2209.12614
Identifying epidemic related Tweets using noisy learning
Ramya Tekumalla, Juan M. Banda
Supervised learning algorithms are heavily reliant on annotated datasets to train machine learning models. However, the curation of the annotated datasets is laborious and time consuming due to the manual effort involved and has become a huge bottleneck in supervised learning. In this work, we apply the theory of noisy learning to generate weak supervision signals instead of manual annotation. We curate a noisy labeled dataset using a labeling heuristic to identify epidemic related tweets. We evaluated the performance using a large epidemic corpus and our results demonstrate that models trained with noisy data in a class imbalanced and multi-classification weak supervision setting achieved performance greater than 90%.
Submitted: Sep 10, 2022