Paper ID: 2209.13332

Continuous approximation by convolutional neural networks with a sigmoidal function

Weike Chang

In this paper we present a class of convolutional neural networks (CNNs) called non-overlapping CNNs in the study of approximation capabilities of CNNs. We prove that such networks with sigmoidal activation function are capable of approximating arbitrary continuous function defined on compact input sets with any desired degree of accuracy. This result extends existing results where only multilayer feedforward networks are a class of approximators. Evaluations elucidate the accuracy and efficiency of our result and indicate that the proposed non-overlapping CNNs are less sensitive to noise.

Submitted: Sep 27, 2022