Paper ID: 2209.13398
Paused Agent Replay Refresh
Benjamin Parr
Reinforcement learning algorithms have become more complex since the invention of target networks. Unfortunately, target networks have not kept up with this increased complexity, instead requiring approximate solutions to be computationally feasible. These approximations increase noise in the Q-value targets and in the replay sampling distribution. Paused Agent Replay Refresh (PARR) is a drop-in replacement for target networks that supports more complex learning algorithms without this need for approximation. Using a basic Q-network architecture, and refreshing the novelty values, target values, and replay sampling distribution, PARR gets 2500 points in Montezuma's Revenge after only 30.9 million Atari frames. Finally, interpreting PARR in the context of carbon-based learning offers a new reason for sleep.
Submitted: Sep 26, 2022