Paper ID: 2209.14593
Denoising MCMC for Accelerating Diffusion-Based Generative Models
Beomsu Kim, Jong Chul Ye
Diffusion models are powerful generative models that simulate the reverse of diffusion processes using score functions to synthesize data from noise. The sampling process of diffusion models can be interpreted as solving the reverse stochastic differential equation (SDE) or the ordinary differential equation (ODE) of the diffusion process, which often requires up to thousands of discretization steps to generate a single image. This has sparked a great interest in developing efficient integration techniques for reverse-S/ODEs. Here, we propose an orthogonal approach to accelerating score-based sampling: Denoising MCMC (DMCMC). DMCMC first uses MCMC to produce samples in the product space of data and variance (or diffusion time). Then, a reverse-S/ODE integrator is used to denoise the MCMC samples. Since MCMC traverses close to the data manifold, the computation cost of producing a clean sample for DMCMC is much less than that of producing a clean sample from noise. To verify the proposed concept, we show that Denoising Langevin Gibbs (DLG), an instance of DMCMC, successfully accelerates all six reverse-S/ODE integrators considered in this work on the tasks of CIFAR10 and CelebA-HQ-256 image generation. Notably, combined with integrators of Karras et al. (2022) and pre-trained score models of Song et al. (2021b), DLG achieves SOTA results. In the limited number of score function evaluation (NFE) settings on CIFAR10, we have $3.86$ FID with $\approx 10$ NFE and $2.63$ FID with $\approx 20$ NFE. On CelebA-HQ-256, we have $6.99$ FID with $\approx 160$ NFE, which beats the current best record of Kim et al. (2022) among score-based models, $7.16$ FID with $4000$ NFE. Code: https://github.com/1202kbs/DMCMC
Submitted: Sep 29, 2022