Paper ID: 2209.15159

MobileViTv3: Mobile-Friendly Vision Transformer with Simple and Effective Fusion of Local, Global and Input Features

Shakti N. Wadekar, Abhishek Chaurasia

MobileViT (MobileViTv1) combines convolutional neural networks (CNNs) and vision transformers (ViTs) to create light-weight models for mobile vision tasks. Though the main MobileViTv1-block helps to achieve competitive state-of-the-art results, the fusion block inside MobileViTv1-block, creates scaling challenges and has a complex learning task. We propose changes to the fusion block that are simple and effective to create MobileViTv3-block, which addresses the scaling and simplifies the learning task. Our proposed MobileViTv3-block used to create MobileViTv3-XXS, XS and S models outperform MobileViTv1 on ImageNet-1k, ADE20K, COCO and PascalVOC2012 datasets. On ImageNet-1K, MobileViTv3-XXS and MobileViTv3-XS surpasses MobileViTv1-XXS and MobileViTv1-XS by 2% and 1.9% respectively. Recently published MobileViTv2 architecture removes fusion block and uses linear complexity transformers to perform better than MobileViTv1. We add our proposed fusion block to MobileViTv2 to create MobileViTv3-0.5, 0.75 and 1.0 models. These new models give better accuracy numbers on ImageNet-1k, ADE20K, COCO and PascalVOC2012 datasets as compared to MobileViTv2. MobileViTv3-0.5 and MobileViTv3-0.75 outperforms MobileViTv2-0.5 and MobileViTv2-0.75 by 2.1% and 1.0% respectively on ImageNet-1K dataset. For segmentation task, MobileViTv3-1.0 achieves 2.07% and 1.1% better mIOU compared to MobileViTv2-1.0 on ADE20K dataset and PascalVOC2012 dataset respectively. Our code and the trained models are available at: https://github.com/micronDLA/MobileViTv3

Submitted: Sep 30, 2022