Paper ID: 2209.15325
Symphony: Localizing Multiple Acoustic Sources with a Single Microphone Array
Weiguo Wang, Jinming Li, Yuan He, Yunhao Liu
Sound recognition is an important and popular function of smart devices. The location of sound is basic information associated with the acoustic source. Apart from sound recognition, whether the acoustic sources can be localized largely affects the capability and quality of the smart device's interactive functions. In this work, we study the problem of concurrently localizing multiple acoustic sources with a smart device (e.g., a smart speaker like Amazon Alexa). The existing approaches either can only localize a single source, or require deploying a distributed network of microphone arrays to function. Our proposal called Symphony is the first approach to tackle the above problem with a single microphone array. The insight behind Symphony is that the geometric layout of microphones on the array determines the unique relationship among signals from the same source along the same arriving path, while the source's location determines the DoAs (direction-of-arrival) of signals along different arriving paths. Symphony therefore includes a geometry-based filtering module to distinguish signals from different sources along different paths and a coherence-based module to identify signals from the same source. We implement Symphony with different types of commercial off-the-shelf microphone arrays and evaluate its performance under different settings. The results show that Symphony has a median localization error of 0.694m, which is 68% less than that of the state-of-the-art approach.
Submitted: Sep 30, 2022