Paper ID: 2210.00848

Toward Trustworthy Neural Program Synthesis

Darren Key, Wen-Ding Li, Kevin Ellis

We develop an approach to estimate the probability that a program sampled from a large language model is correct. Given a natural language description of a programming problem, our method samples both candidate programs as well as candidate predicates specifying how the program should behave. This allows learning a model that forms a well-calibrated probabilistic prediction of program correctness. Our system also infers which predicates are useful to explain the behavior of the generated code, and humans preferred these in a human study over raw language model outputs. Our method is simple, easy to implement, and maintains state of the art generation accuracy results.

Submitted: Sep 29, 2022