Paper ID: 2210.02678
Effective Metaheuristic Based Classifiers for Multiclass Intrusion Detection
Zareen Fatima, Arshad Ali
Network security has become the biggest concern in the area of cyber security because of the exponential growth in computer networks and applications. Intrusion detection plays an important role in the security of information systems or networks devices. The purpose of an intrusion detection system (IDS) is to detect malicious activities and then generate an alarm against these activities. Having a large amount of data is one of the key problems in detecting attacks. Most of the intrusion detection systems use all features of datasets to evaluate the models and result in is, low detection rate, high computational time and uses of many computer resources. For fast attacks detection IDS needs a lightweight data. A feature selection method plays a key role to select best features to achieve maximum accuracy. This research work conduct experiments by considering on two updated attacks datasets, UNSW-NB15 and CICDDoS2019. This work suggests a wrapper based Genetic Algorithm (GA) features selection method with ensemble classifiers. GA select the best feature subsets and achieve high accuracy, detection rate (DR) and low false alarm rate (FAR) compared to existing approaches. This research focuses on multi-class classification. Implements two ensemble methods: stacking and bagging to detect different types of attacks. The results show that GA improve the accuracy significantly with stacking ensemble classifier.
Submitted: Oct 6, 2022