Paper ID: 2210.03209

Self-Adaptive Driving in Nonstationary Environments through Conjectural Online Lookahead Adaptation

Tao Li, Haozhe Lei, Quanyan Zhu

Powered by deep representation learning, reinforcement learning (RL) provides an end-to-end learning framework capable of solving self-driving (SD) tasks without manual designs. However, time-varying nonstationary environments cause proficient but specialized RL policies to fail at execution time. For example, an RL-based SD policy trained under sunny days does not generalize well to rainy weather. Even though meta learning enables the RL agent to adapt to new tasks/environments, its offline operation fails to equip the agent with online adaptation ability when facing nonstationary environments. This work proposes an online meta reinforcement learning algorithm based on the \emph{conjectural online lookahead adaptation} (COLA). COLA determines the online adaptation at every step by maximizing the agent's conjecture of the future performance in a lookahead horizon. Experimental results demonstrate that under dynamically changing weather and lighting conditions, the COLA-based self-adaptive driving outperforms the baseline policies in terms of online adaptability. A demo video, source code, and appendixes are available at {\tt https://github.com/Panshark/COLA}

Submitted: Oct 6, 2022