Paper ID: 2210.04866
PoGaIN: Poisson-Gaussian Image Noise Modeling from Paired Samples
Nicolas Bähler, Majed El Helou, Étienne Objois, Kaan Okumuş, Sabine Süsstrunk
Image noise can often be accurately fitted to a Poisson-Gaussian distribution. However, estimating the distribution parameters from a noisy image only is a challenging task. Here, we study the case when paired noisy and noise-free samples are accessible. No method is currently available to exploit the noise-free information, which may help to achieve more accurate estimations. To fill this gap, we derive a novel, cumulant-based, approach for Poisson-Gaussian noise modeling from paired image samples. We show its improved performance over different baselines, with special emphasis on MSE, effect of outliers, image dependence, and bias. We additionally derive the log-likelihood function for further insights and discuss real-world applicability.
Submitted: Oct 10, 2022