Paper ID: 2210.07353

JOIST: A Joint Speech and Text Streaming Model For ASR

Tara N. Sainath, Rohit Prabhavalkar, Ankur Bapna, Yu Zhang, Zhouyuan Huo, Zhehuai Chen, Bo Li, Weiran Wang, Trevor Strohman

We present JOIST, an algorithm to train a streaming, cascaded, encoder end-to-end (E2E) model with both speech-text paired inputs, and text-only unpaired inputs. Unlike previous works, we explore joint training with both modalities, rather than pre-training and fine-tuning. In addition, we explore JOIST using a streaming E2E model with an order of magnitude more data, which are also novelties compared to previous works. Through a series of ablation studies, we explore different types of text modeling, including how to model the length of the text sequence and the appropriate text sub-word unit representation. We find that best text representation for JOIST improves WER across a variety of search and rare-word test sets by 4-14% relative, compared to a model not trained with text. In addition, we quantitatively show that JOIST maintains streaming capabilities, which is important for good user-level experience.

Submitted: Oct 13, 2022