Paper ID: 2210.08169
Self-supervised Graph Learning for Long-tailed Cognitive Diagnosis
Shanshan Wang, Zhen Zeng, Xun Yang, Xingyi Zhang
Cognitive diagnosis is a fundamental yet critical research task in the field of intelligent education, which aims to discover the proficiency level of different students on specific knowledge concepts. Despite the effectiveness of existing efforts, previous methods always considered the mastery level on the whole students, so they still suffer from the Long Tail Effect. A large number of students who have sparse data are performed poorly in the model. To relieve the situation, we proposed a Self-supervised Cognitive Diagnosis (SCD) framework which leverages the self-supervised manner to assist the graph-based cognitive diagnosis, then the performance on those students with sparse data can be improved. Specifically, we came up with a graph confusion method that drops edges under some special rules to generate different sparse views of the graph. By maximizing the consistency of the representation on the same node under different views, the model could be more focused on long-tailed students. Additionally, we proposed an importance-based view generation rule to improve the influence of long-tailed students. Extensive experiments on real-world datasets show the effectiveness of our approach, especially on the students with sparse data.
Submitted: Oct 15, 2022