Paper ID: 2210.08263

Reinforcement Learning for ConnectX

Sheel Shah, Shubham Gupta

ConnectX is a two-player game that generalizes the popular game Connect 4. The objective is to get X coins across a row, column, or diagonal of an M x N board. The first player to do so wins the game. The parameters (M, N, X) are allowed to change in each game, making ConnectX a novel and challenging problem. In this paper, we present our work on the implementation and modification of various reinforcement learning algorithms to play ConnectX.

Submitted: Oct 15, 2022