Paper ID: 2210.08342
Well-definedness of Physical Law Learning: The Uniqueness Problem
Philipp Scholl, Aras Bacho, Holger Boche, Gitta Kutyniok
Physical law learning is the ambiguous attempt at automating the derivation of governing equations with the use of machine learning techniques. The current literature focuses however solely on the development of methods to achieve this goal, and a theoretical foundation is at present missing. This paper shall thus serve as a first step to build a comprehensive theoretical framework for learning physical laws, aiming to provide reliability to according algorithms. One key problem consists in the fact that the governing equations might not be uniquely determined by the given data. We will study this problem in the common situation that a physical law is described by an ordinary or partial differential equation. For various different classes of differential equations, we provide both necessary and sufficient conditions for a function to uniquely determine the differential equation which is governing the phenomenon. We then use our results to devise numerical algorithms to determine whether a function solves a differential equation uniquely. Finally, we provide extensive numerical experiments showing that our algorithms in combination with common approaches for learning physical laws indeed allow to guarantee that a unique governing differential equation is learnt, without assuming any knowledge about the function, thereby ensuring reliability.
Submitted: Oct 15, 2022