Paper ID: 2210.08474

Sentence Representation Learning with Generative Objective rather than Contrastive Objective

Bohong Wu, Hai Zhao

Though offering amazing contextualized token-level representations, current pre-trained language models take less attention on accurately acquiring sentence-level representation during their self-supervised pre-training. However, contrastive objectives which dominate the current sentence representation learning bring little linguistic interpretability and no performance guarantee on downstream semantic tasks. We instead propose a novel generative self-supervised learning objective based on phrase reconstruction. To overcome the drawbacks of previous generative methods, we carefully model intra-sentence structure by breaking down one sentence into pieces of important phrases. Empirical studies show that our generative learning achieves powerful enough performance improvement and outperforms the current state-of-the-art contrastive methods not only on the STS benchmarks, but also on downstream semantic retrieval and reranking tasks. Our code is available at https://github.com/chengzhipanpan/PaSeR.

Submitted: Oct 16, 2022