Paper ID: 2210.09440

Using Bottleneck Adapters to Identify Cancer in Clinical Notes under Low-Resource Constraints

Omid Rohanian, Hannah Jauncey, Mohammadmahdi Nouriborji, Vinod Kumar Chauhan, Bronner P. Gonçalves, Christiana Kartsonaki, ISARIC Clinical Characterisation Group, Laura Merson, David Clifton

Processing information locked within clinical health records is a challenging task that remains an active area of research in biomedical NLP. In this work, we evaluate a broad set of machine learning techniques ranging from simple RNNs to specialised transformers such as BioBERT on a dataset containing clinical notes along with a set of annotations indicating whether a sample is cancer-related or not. Furthermore, we specifically employ efficient fine-tuning methods from NLP, namely, bottleneck adapters and prompt tuning, to adapt the models to our specialised task. Our evaluations suggest that fine-tuning a frozen BERT model pre-trained on natural language and with bottleneck adapters outperforms all other strategies, including full fine-tuning of the specialised BioBERT model. Based on our findings, we suggest that using bottleneck adapters in low-resource situations with limited access to labelled data or processing capacity could be a viable strategy in biomedical text mining. The code used in the experiments are going to be made available at https://github.com/omidrohanian/bottleneck-adapters.

Submitted: Oct 17, 2022