Paper ID: 2210.09472

Multi-granularity Argument Mining in Legal Texts

Huihui Xu, Kevin Ashley

In this paper, we explore legal argument mining using multiple levels of granularity. Argument mining has usually been conceptualized as a sentence classification problem. In this work, we conceptualize argument mining as a token-level (i.e., word-level) classification problem. We use a Longformer model to classify the tokens. Results show that token-level text classification identifies certain legal argument elements more accurately than sentence-level text classification. Token-level classification also provides greater flexibility to analyze legal texts and to gain more insight into what the model focuses on when processing a large amount of input data.

Submitted: Oct 17, 2022