Paper ID: 2210.09773
Retrofitting Multilingual Sentence Embeddings with Abstract Meaning Representation
Deng Cai, Xin Li, Jackie Chun-Sing Ho, Lidong Bing, Wai Lam
We introduce a new method to improve existing multilingual sentence embeddings with Abstract Meaning Representation (AMR). Compared with the original textual input, AMR is a structured semantic representation that presents the core concepts and relations in a sentence explicitly and unambiguously. It also helps reduce surface variations across different expressions and languages. Unlike most prior work that only evaluates the ability to measure semantic similarity, we present a thorough evaluation of existing multilingual sentence embeddings and our improved versions, which include a collection of five transfer tasks in different downstream applications. Experiment results show that retrofitting multilingual sentence embeddings with AMR leads to better state-of-the-art performance on both semantic textual similarity and transfer tasks. Our codebase and evaluation scripts can be found at \url{https://github.com/jcyk/MSE-AMR}.
Submitted: Oct 18, 2022