Paper ID: 2210.10876
Exiting the Simulation: The Road to Robust and Resilient Autonomous Vehicles at Scale
Richard Chakra
In the past two decades, autonomous driving has been catalyzed into reality by the growing capabilities of machine learning. This paradigm shift possesses significant potential to transform the future of mobility and reshape our society as a whole. With the recent advances in perception, planning, and control capabilities, autonomous driving technologies are being rolled out for public trials, yet we remain far from being able to rigorously ensure the resilient operations of these systems across the long-tailed nature of the driving environment. Given the limitations of real-world testing, autonomous vehicle simulation stands as the critical component in exploring the edge of autonomous driving capabilities, developing the robust behaviors required for successful real-world operation, and enabling the extraction of hidden risks from these complex systems prior to deployment. This paper presents the current state-of-the-art simulation frameworks and methodologies used in the development of autonomous driving systems, with a focus on outlining how simulation is used to build the resiliency required for real-world operation and the methods developed to bridge the gap between simulation and reality. A synthesis of the key challenges surrounding autonomous driving simulation is presented, specifically highlighting the opportunities to further advance the ability to continuously learn in simulation and effectively transfer the learning into the real-world - enabling autonomous vehicles to exit the guardrails of simulation and deliver robust and resilient operations at scale.
Submitted: Oct 19, 2022