Paper ID: 2210.11298

Tele-Knowledge Pre-training for Fault Analysis

Zhuo Chen, Wen Zhang, Yufeng Huang, Mingyang Chen, Yuxia Geng, Hongtao Yu, Zhen Bi, Yichi Zhang, Zhen Yao, Wenting Song, Xinliang Wu, Yi Yang, Mingyi Chen, Zhaoyang Lian, Yingying Li, Lei Cheng, Huajun Chen

In this work, we share our experience on tele-knowledge pre-training for fault analysis, a crucial task in telecommunication applications that requires a wide range of knowledge normally found in both machine log data and product documents. To organize this knowledge from experts uniformly, we propose to create a Tele-KG (tele-knowledge graph). Using this valuable data, we further propose a tele-domain language pre-training model TeleBERT and its knowledge-enhanced version, a tele-knowledge re-training model KTeleBERT. which includes effective prompt hints, adaptive numerical data encoding, and two knowledge injection paradigms. Concretely, our proposal includes two stages: first, pre-training TeleBERT on 20 million tele-related corpora, and then re-training it on 1 million causal and machine-related corpora to obtain KTeleBERT. Our evaluation on multiple tasks related to fault analysis in tele-applications, including root-cause analysis, event association prediction, and fault chain tracing, shows that pre-training a language model with tele-domain data is beneficial for downstream tasks. Moreover, the KTeleBERT re-training further improves the performance of task models, highlighting the effectiveness of incorporating diverse tele-knowledge into the model.

Submitted: Oct 20, 2022