Paper ID: 2210.11489
Machine-Learning Compression for Particle Physics Discoveries
Jack H. Collins, Yifeng Huang, Simon Knapen, Benjamin Nachman, Daniel Whiteson
In collider-based particle and nuclear physics experiments, data are produced at such extreme rates that only a subset can be recorded for later analysis. Typically, algorithms select individual collision events for preservation and store the complete experimental response. A relatively new alternative strategy is to additionally save a partial record for a larger subset of events, allowing for later specific analysis of a larger fraction of events. We propose a strategy that bridges these paradigms by compressing entire events for generic offline analysis but at a lower fidelity. An optimal-transport-based $\beta$ Variational Autoencoder (VAE) is used to automate the compression and the hyperparameter $\beta$ controls the compression fidelity. We introduce a new approach for multi-objective learning functions by simultaneously learning a VAE appropriate for all values of $\beta$ through parameterization. We present an example use case, a di-muon resonance search at the Large Hadron Collider (LHC), where we show that simulated data compressed by our $\beta$-VAE has enough fidelity to distinguish distinct signal morphologies.
Submitted: Oct 20, 2022