Paper ID: 2210.11921
Multi-scale data reconstruction of turbulent rotating flows with Gappy POD, Extended POD and Generative Adversarial Networks
Tianyi Li, Michele Buzzicotti, Luca Biferale, Fabio Bonaccorso, Shiyi Chen, Minping Wan
Data reconstruction of rotating turbulent snapshots is investigated utilizing data-driven tools. This problem is crucial for numerous geophysical applications and fundamental aspects, given the concurrent effects of direct and inverse energy cascades, which lead to non-Gaussian statistics at both large and small scales. Data assimilation also serves as a tool to rank physical features within turbulence, by evaluating the performance of reconstruction in terms of the quality and quantity of the information used. Additionally, benchmarking various reconstruction techniques is essential to assess the trade-off between quantitative supremacy, implementation complexity, and explicability. In this study, we use linear and non-linear tools based on the Proper Orthogonal Decomposition (POD) and Generative Adversarial Network (GAN) for reconstructing rotating turbulence snapshots with spatial damages (inpainting). We focus on accurately reproducing both statistical properties and instantaneous velocity fields. Different gap sizes and gap geometries are investigated in order to assess the importance of coherency and multi-scale properties of the missing information. Surprisingly enough, concerning point-wise reconstruction, the non-linear GAN does not outperform one of the linear POD techniques. On the other hand, supremacy of the GAN approach is shown when the statistical multi-scale properties are compared. Similarly, extreme events in the gap region are better predicted when using GAN. The balance between point-wise error and statistical properties is controlled by the adversarial ratio, which determines the relative importance of the generator and the discriminator in the GAN training. Robustness against the measurement noise is also discussed.
Submitted: Oct 21, 2022