Paper ID: 2210.12430
Speech Emotion Recognition via an Attentive Time-Frequency Neural Network
Cheng Lu, Wenming Zheng, Hailun Lian, Yuan Zong, Chuangao Tang, Sunan Li, Yan Zhao
Spectrogram is commonly used as the input feature of deep neural networks to learn the high(er)-level time-frequency pattern of speech signal for speech emotion recognition (SER). \textcolor{black}{Generally, different emotions correspond to specific energy activations both within frequency bands and time frames on spectrogram, which indicates the frequency and time domains are both essential to represent the emotion for SER. However, recent spectrogram-based works mainly focus on modeling the long-term dependency in time domain, leading to these methods encountering the following two issues: (1) neglecting to model the emotion-related correlations within frequency domain during the time-frequency joint learning; (2) ignoring to capture the specific frequency bands associated with emotions.} To cope with the issues, we propose an attentive time-frequency neural network (ATFNN) for SER, including a time-frequency neural network (TFNN) and time-frequency attention. Specifically, aiming at the first issue, we design a TFNN with a frequency-domain encoder (F-Encoder) based on the Transformer encoder and a time-domain encoder (T-Encoder) based on the Bidirectional Long Short-Term Memory (Bi-LSTM). The F-Encoder and T-Encoder model the correlations within frequency bands and time frames, respectively, and they are embedded into a time-frequency joint learning strategy to obtain the time-frequency patterns for speech emotions. Moreover, to handle the second issue, we also adopt time-frequency attention with a frequency-attention network (F-Attention) and a time-attention network (T-Attention) to focus on the emotion-related frequency band ranges and time frame ranges, which can enhance the discriminability of speech emotion features.
Submitted: Oct 22, 2022