Paper ID: 2210.14085
Audio MFCC-gram Transformers for respiratory insufficiency detection in COVID-19
Marcelo Matheus Gauy, Marcelo Finger
This work explores speech as a biomarker and investigates the detection of respiratory insufficiency (RI) by analyzing speech samples. Previous work \cite{spira2021} constructed a dataset of respiratory insufficiency COVID-19 patient utterances and analyzed it by means of a convolutional neural network achieving an accuracy of $87.04\%$, validating the hypothesis that one can detect RI through speech. Here, we study how Transformer neural network architectures can improve the performance on RI detection. This approach enables construction of an acoustic model. By choosing the correct pretraining technique, we generate a self-supervised acoustic model, leading to improved performance ($96.53\%$) of Transformers for RI detection.
Submitted: Oct 25, 2022