Paper ID: 2210.15156

Towards Complex Backgrounds: A Unified Difference-Aware Decoder for Binary Segmentation

Jiepan Li, Wei He, Hongyan Zhang

Binary segmentation is used to distinguish objects of interest from background, and is an active area of convolutional encoder-decoder network research. The current decoders are designed for specific objects based on the common backbones as the encoders, but cannot deal with complex backgrounds. Inspired by the way human eyes detect objects of interest, a new unified dual-branch decoder paradigm named the difference-aware decoder is proposed in this paper to explore the difference between the foreground and the background and separate the objects of interest in optical images. The difference-aware decoder imitates the human eye in three stages using the multi-level features output by the encoder. In Stage A, the first branch decoder of the difference-aware decoder is used to obtain a guide map. The highest-level features are enhanced with a novel field expansion module and a dual residual attention module, and are combined with the lowest-level features to obtain the guide map. In Stage B, the other branch decoder adopts a middle feature fusion module to make trade-offs between textural details and semantic information and generate background-aware features. In Stage C, the proposed difference-aware extractor, consisting of a difference guidance model and a difference enhancement module, fuses the guide map from Stage A and the background-aware features from Stage B, to enlarge the differences between the foreground and the background and output a final detection result. The results demonstrate that the difference-aware decoder can achieve a higher accuracy than the other state-of-the-art binary segmentation methods for these tasks.

Submitted: Oct 27, 2022