Paper ID: 2210.15566

UNet-2022: Exploring Dynamics in Non-isomorphic Architecture

Jiansen Guo, Hong-Yu Zhou, Liansheng Wang, Yizhou Yu

Recent medical image segmentation models are mostly hybrid, which integrate self-attention and convolution layers into the non-isomorphic architecture. However, one potential drawback of these approaches is that they failed to provide an intuitive explanation of why this hybrid combination manner is beneficial, making it difficult for subsequent work to make improvements on top of them. To address this issue, we first analyze the differences between the weight allocation mechanisms of the self-attention and convolution. Based on this analysis, we propose to construct a parallel non-isomorphic block that takes the advantages of self-attention and convolution with simple parallelization. We name the resulting U-shape segmentation model as UNet-2022. In experiments, UNet-2022 obviously outperforms its counterparts in a range segmentation tasks, including abdominal multi-organ segmentation, automatic cardiac diagnosis, neural structures segmentation, and skin lesion segmentation, sometimes surpassing the best performing baseline by 4%. Specifically, UNet-2022 surpasses nnUNet, the most recognized segmentation model at present, by large margins. These phenomena indicate the potential of UNet-2022 to become the model of choice for medical image segmentation.

Submitted: Oct 27, 2022